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SETTLING OF A BIDISPERSE SUSPENSION

B. 8. Endler UDC 66.063.94

The influence of the fractional composition on the settling velocity of a bidisperse suspension
is investigated theoretically. The average particle radius of a settling bidisperse suspension
is calculated.

Monodisperse suspensions are rarely encountered in practical engineering, and a disperse phase
usually consists of a mixture of particles of different sizes. Despite this, considerably fewer reports have
been devoted to the investigation of the motion of polydisperse than of monodisperse suspensions.

The force of interaction between the liquid and disperse phases of a polydisperse suspension of moderate
concentration was determined in [1] using rigorous statistical methods. Without additional considerations,
however, one cannot determine from [1] the velocities of motion of the separate fractions needed to study the
settling of a polydisperse suspension.

The settling of multifraction suspensions of fine particles of equal density was investigated theoretically
in [2-6] on the basis of various assumptions about the form of the dependence of these velocities on the frac-
tional composition and the total volumetric concentration of the disperse phase. Here, by analogy with the
monodisperse case, the dependence of the settling velocities of the individual fractions on the fractional com-
position and the total concentration was assigned in [2, 3] in power-law form, where the porosity of the sus-
pension served as the base while the exponent depended on the composition. A modified cell model was used
for these purposes in [4], and data of {7] on the magnitude of the force of interaction between a fillering stream
and a stationary, polydisperse granular bed were used in [5, 6]. The settling of bidisperse suspensions of par-
ticles of equal density at low Reynolds numbers was investigated experimentally in [2-5, 8-11].

Let us consider the wniform gravitational settling of a bidisperse suspension of moderate concentration.
The continuous phase consists of an incompressible Newtonian liquid with a viscosity u, and density d,, while
the disperse phase consists of a mixture of two fractions of spherical particles with radii ¢' and 2" and a
density d;. The volumetric concentrations of the particles @' and a " and of the entire disperse phase are p',
p",andp =p!'+p", respectively. The Reynolds numbers characterizing both the flow cover individual par-
ticles and the motion of the phases on the average are small compared with mnity. For determinacy, let a™ >
a' and let the distribution of the concentrations p' and p " be uniform.

Using [1], we represent the force of interaction of each fraction with the continuous phase, due to the
action of viscous-friction forces, as the sum of two terms: the first, allowing for the constrained nature of
the settling, coincides with that of [1]; the second characterizes the interaction between the fractions, due to
the difference between the settling velocities of the fractions. Then the equations of conservation of mass and
momentum describing the settling of the fractions have the form

All-Union Scientific-Research Institute of Petrochemical Processes, Leningrad. Translated from In-
zhenerno-Fizicheskii Zhurnal, Vol. 44, No. 4, pp. 601-607, April, 1983. Original article submitted Novem-
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The structure of the expression for the second terms on the left sides of the equations of conservation
of momentum (1) is determined from the following considerations. In the cosettling of two particle fractions
of different sizes and the same density one of the fractions passes through the layer of particles of the other
fraction. In the case when the concentration of the disperse phase is moderate, the force of interaction be-
tween a certain particle of one size and the fraction of particles of the other size can be assumed to be pro-
portional to the volumetric concentration of particles of the other size. Then the force of interaction between
fractions must be proportional to the product of the volumetric concentrations of the fractions, p'p", and the
difference between their settling velocities. Because the forces of interaction between the fractions are equal,
the coefficients A' and A " must satisfy the relation

M@ = A" (). 2)

Let us consider a settling process in which the velocity of motion of the suspension as a whole, v = & v+
p 'v't+p "v", equals zero, the motion of the phases takes place in the vertical direction, and all the variables
depend only on the vertical coordinate. With v = 0 and a uniform initial particle distribution over the height
of the suspension column, four characteristic zones are formed after a certain time following the start of
settling: 0) a zone of pure water; 1) a zone of settling of particles of radius a'; 2) a zone of cosettling of par-
ticlen of radii o' and a"; 3) a sediment zone, The volumetric concentrations p' and p" in the second zone do not
vary with time and hence equal the initial concentrations.

Using (1) and (2) we obtain the expressions for the settling velocities of the fractions of fine (vy') and
coarse (vy") particles in the second zone:

e+ 90" (1 —s») -+ ps%eMF 1

e[l (0" + o' ) NF]

e+ 0 (1—5-2) + gpAF—!
ell + (o + o' ) NF']

ve=Kuw; K =

v = K", K =

Here s =a "/a' and u' and u" are the settling velocities of disperse phases of monodisperse suspensions of
particles a' and a ", respectively, at the concentrationp =p'+p " and under the condition that the suspension
as a whole ig stationary [1]:

w=(1—pP(1—25p)u; u' =(1—p)*(l—2.50)u,

where u; and u, are the settling velocities of single particles a!' and @ ", respectively, in an unbounded sta-
tionary liquid. The coefficients K' and K" show the difference between the settling velocities in the bi- and
monodisperse cases. For s =1 (@'=a") we have K' = K" =1.
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By analogy with (3), from (1) and (2) we obtain expressions for the velocities of motion of the fractions
relative to the liquid in the second zone:

. A'ps?
Vo — V=P —u); P= F:F,,QS PN

F4 W (0" + s%") (4)
V;——VUZP”(UII—“Q); P”= F+A‘p

F4W(p" 4 s29")

The coefficients P' and P" characterize the difference between the velocities of motion of the fractions
relative to the liquid in bi- and monodisperse suspensions.

The settling velocity of particles of radius a' in the first zone is (see (3))

vi=(1—p)*(1—250)u,. (5)
Equations (3)-(5), together with the relations

— Vi =8 (Voy— V1); & (Vos — V2) = & (Ve — V2); (6)
p1 (Vi — va) = 9" (Vs — Va),

which follow from the conditions of conservation of mass in the transition through the boundaries of the zones,
determine the velocities vy', vo', v»", vy, and vy, and the concentration p,' for given initial concentrations
p'and p" and a known value of the coefficient A'.

The first equation of (6) determines the flux of the continuous phase from the first to the zeroth zone
while the second and third equations determine the fluxes of the continuous phases and the fraction of fine par-
ticles, respectively, from the second to the first zone. The third equation of (6) shows that the concentration
of fine particles in the first zone will be higher than in the initial mixture (p,'> p ") if the fine particles settle
faster in the first zone than in the second (v;'> v,').

To close equations (3)-(6) we must know A'.

Let A' = A" = 0. Then from (3)-(8) it follows that in a bidisperse suspension fine particles settle slower
(K' < 1) and large particles settle faster (K" > 1) than in the corresponding monodisperse suspensions with
p = const., And when the condition (1 —p)/(p —p') < s* =~ 1 is satisfied the coefficient K' is negative, which
corresponds to upward motion of fine particles in the second zone under the action of the ascending liquid flow.
The velocities of the coarse and fine particles relative to the liquid do not depend on the fractional composition
of the disperse phase and equal the analogous velocities in monodisperse suspensions. The settling velocity
of fine particles in the second zone is lower than in the first zone, and hence the concentration of these parti-
cles is higher in the first zone than in the initial mixture.

Let A'>>1 (A" »1). Then, with allowance for the relation u" = s?u’, it follows from (3) and (4) that: par-
ticles of different sizes settle at the same velocities, i.e., in a regime of consolidated settling; the first zone
does not exist; in a bidisperse suspension fine particles settle faster both relative to the walls and the liquid
(P' = K'> 1), while coarse particles settle slower (P" = K" < 1), than in the corresponding monodisperse sus-
pensions with p = const. The consolidated regime of settling of a bidisperse suspension was observed in the
experiments of [9] with highly concentrated suspensions (p > 0.3). The reason for the strong interaction be-
tween the fractions may be, for example, contact inferactions between particles. However, to describe effects
of this kind one must remove the "paradox of zero relative velocity" [12], according to which, under the as-
sumption that the Reynolds numbers are small, two particles under the action of gravity can come together
up to contact only in an infinite time.

To determine the true values of the coefficients A' and A" we used the experiments of [10], in which the
influence of the fractional composition of the disperse phase of a bidisperse suspension on the settling of the
fraction of coarse particles was studied for constant values of @ and a".

A comparison of the results of the calculation of K" with the experimental data of [10] showed (Fig. 1)
that in the range of variation of the concentration of the disperse phase of 0-0.3 and for a fixed value of the
parameter s the coefficient A' does not depend on the fractional composition, being a function of the concen-
tration of the disperse phase as a whole, and its behavior is described by the formula

A = 1.289 1+ exp(17.84 p — 4.778). (7)
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Fig. 3. Dependence of @/a' on the fractional composition p'/p
of the disperse phase: curves) Eq. (8): 1) p = 0.1; 2) 0.2; 3) 0.3;
a) approximating equation (9); b) data of [15].

We obtain the value of the coefficient A" from (2) with s = 2.285.

Using (7), we calculated the coefficients K', P', and P" (see Fig. 1) and the concentration p;' of fine
particles in the first zone (Fig. 2). A graph of the dependence from [11] is also presented in Fig. 1.

An analysis of the data presented in Fig. 1 shows that the coarse particles in a bidisperse suspension
move slower relative to the walls of the vessel containing the suspension and relative to the liguid than in a
monodisperse suspension of large particles with the same concentration of the disperse phase as a whole
(K" < 1, P" < 1), and P" < K" for fixed values of p'/p and p. Conversely, fine particles in a bidisperse
suspension move faster relative to the liquid (P' > 1) and slower relative to the wall (K' < 1) than in a mono-
disperse suspension of fine particles with a fixed value of p.

The results of the calculations, which are well confirmed experimentally (see Fig. 2), indicate an in-
crease in the concentration of fine particles in the first zone compared with the concentration of these parti-
cles in the initial suspension. This means that the settling velocity of fine particles is lower in the first zone
than in the second.

The actual settling regime is intermediate to the limiting settling regimes analyzed above with negli-
gibly small (A\' =A" = 0) and strong A'> 1, A" > 1) interaction between phases.

Average Particle Radius of a Settling Bidisperse Suspension. To make engineering calculations of the
flow of a polydisperse suspension, analyze test data on its settling, etc., one must assign the value of the
average particle radius. There is no unique means of choosing such a radius in the literature. For example,
in [13] the average radius is determined from the arithmetic-mean veloeity of settling of 150 identical par-
ticles, in [14] the volumetric-mean radius was chosen as the average, and in [15] the average radius was re-
presented in the form of a combination of the first three moments of the particle size on the basis of an ana-
lysis of the settling of a polydisperse suspension of particles not interacting with each other.

Here the average radius is determined from the obvious condition that the settling velocities of a poly-
disperse suspension and a monodisperse suspension of particles of the average radius coincide.

Using (3) we represent the volumetric flux of the disperse phase of a bidisperse suspension, pv) = pv'+

p"v", in the form
ov, —pud, A=K +ofK (8)
P P

We introduce the radius @ in accordance with the relation @ =a'vA. Then it follows from (8) that the
volumetric settling velocities of the disperse phases of a bidisperse suspension and a monodisperse suspen-
sion of particles of radius a are equal, and hence the radius & is the average radius. A graph of the depen-
dence of a/a' on the fractional composition p'/p and the volumetric concentration of the disperse phase of a
bidisperse suspension is presented in Fig. 3.

410



In engineering calculations the average radius is usually expressed through a combination of i-th mo-
ments of particle size.

m; = [ alg(a) da.

A comparison of the two means of representing the average radius ¢ defined by (8) is approximated
most satisfactorily by the quantity

E:Lni:a’(vg—-—}—sp ). (9)
1y P P

A graph of the function @/a' given by (9) is shown in Fig. 3. The results of a calculation from the equa-
tion proposed in [15] are also illustrated there. It is seen from Fig. 3 that the function (9) yields better re-
sults than the expression from [15].

From an analysis of the results obtained it follows that the fractional composition of the disperse phase
affects the settling velocity of the disperse phase, and this influence increases with an increase in the total
concentration. In periodic settling the coarse and fine particles in a bidisperse suspension move slower rela-
tive to the vessel walls than in periodic settling of monodisperse suspensions of the respective coarse and fine
particles with equal values of the concentration of the disperse phase as a whole. However, fine particles
move faster relative to the liquid and coarse ones move slower in the case of a bidisperse suspension than in
the respective monodisperse suspensions. In periodic settling of a bidisperse suspension the concentration of
fine particles in the upper zone is higher than in the initial suspension. The volumetric settling velocities of
the disperse phases of bi- and monodisperse suspensions coincide if the particles of the monodisperse sus-
pension have a radius equal to the ratio of the fourth and third moments of the particle size of the disperse
phase of the bidisperse suspension.

NOTATION

Hy, do, liquid viscosity and density; dy, density of particle material; a', a", particle radii; v', v", velo-
cities of fractions of particles a' and a"; vy and vy, velocities of continuous and disperse phases; vy, vy, velo-
cities of continuous phase in the first and second zones, respectively; v;', py', &, velocity and volumetric
concentration of fraction of particles a' and porosity in the first zone; vy', vy", settling velocities of fractions
of particles a' and a" in the second zone; p', p", volumetric concentrations of particles a' and a" in the ini-
tial mixture and in the second zone; p = p' + p"; £, volumetric concentration of the disperse phase as a whole
and porosity of the suspension in the initial mixture and in the second zone; g, free-fall acceleration; F, A',
A" proportionality factors in (1); K', K", P!, P", coefficients in (3) and (4); uy, velocity of continuous phase
of the monodisperse suspension; u' and u", settling velocities of disperse phases of monodisperse suspensions
of particles a' and a"; u; and u,y, settling velocities of single particles @' and a"; a, average radius; A, coeffi-
cient in (8); mj, i-th moment of particle size; ¢{a), particle size distribution function; s = a"/a', parameter.
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SIMULATION OF VERTICAL TRANSPORT OF HEAT AND
SOLID PARTICLES IN FLUIDIZED-BED APPARATUS

Yu. S. Teplitskii and I. I. Yanovich UDC 66.096.5

An equation for simulating nonstationary vertical transport of heat and solid particles in
nonhomogeneous fluidized beds is proposed.

The trends in the transport of solid particles and the related heat transport* throughout the fluidized
bed space strongly affect the operating efficiency of apparatus based on fluidization techniques. Therefore,
the mixing of particles and internal heat transfer in such a system invariably engage the interest of resear-
chers [1-4].

Until recently, the most commonly accepted vertical mixing scheme was based on the classical diffu-
sion model, which describes the process by means of a single parameter —the coefficients of vertical diffu-
sion (dispersion) of particles [1]. However, this model cannot describe the experimentally observed nonsta-
tionary mixing curves [5].

It was proposed in [6], probably for the first time, to describe the process by a hyperbolic diffusion
equation that would take into account the finiteness of the particle velocities. A system of two hyperbolic
first-order equations was used earlier in [7] for describing the vertical mixing of the solid phase. This sys-
tem was based on the assumption that the transport of particles throughout the bed was purely convective
(circulatory) in character: upward in the bubble trails and downward in the rest of the emulsion phase. In
this, the particle velocities in both phases were, naturally, limited. The necessity and importance of taking
into account the finiteness of the velocity of particles was shownin [5, 8] by direct comparison between the
experimental mixing curves and those calculated by means of hyperbolic equations [6, 7]. Using the results
of an analysis of the fluidization process based on methods of the thermodynamics of irreversible processes,
Liu and Gidaspow have derived [3] a hyperbolic equation of diffusion to describe vertical solid phase transport.
It has been suggested in [4] to use three first-order hyperbolic equations to describe vertical mixing of par-
ticles in a bed slowed down by a bunch of pipes. An additional equation (in comparison with the system given
in [7]) describes the downward core motion of particles at the wall. Analysis shows that none of the above
models comprises all the basic characteristics of the mixing process (see below).

* Tt is admissible to assume that the heat transfer is due entirely to the motion of particles in nonhomogene-
ous fluidized beds because of the large difference between the volumetric specific heat values of the gas and
the particles. The transport of heat and the transport of disperse material and therefore characterized by
the same trends, so that, for brevity, we shall subsequently make no special distinction between these pro-
cesses and use only the term "mixing" (diffusion of particles) or rthermal conductivity" of the bed.

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 44, No. 4, pp. 608-615, April, 1983. Original article
submitted December 7, 1981.
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